          Calculation of reflected power from the LCLS RF Gun
   7/11/2005

Task
· The RF Gun reflects power to the klystron.  Large amounts of reflected power to the klystron can cause phase and amplitude instabilities in a klystron.  Look at pulse shaping as a way to reduce reflected power to the klystron and eliminate the requirement for a 30MW S-Band circulator between the RF Gun and klystron.

· Calculate the reflected power from the RF Gun as a function of  the RF input power pulse.

· Increase the power pulse gradually, so the reflected power stays all the time below 4 MW.

Method

· Calculation of the reflected power is carried out in the frequency domain. 
· The frequency domain spectrum of the RF input pulse is obtained by the FFT on the user defined shape of the input pulse in the time domain. 
· Next the Reflection Coefficient ( is expressed as a function of the cavity Transfer Function near the resonant frequency. 
· Reflected signal is calculated as a product of the Fourier transform of RF input signal and the cavity Reflection Coefficient (. 
· Reflected signal is transformed back into the time domain applying the inverse Fourier Transform, IFFT.  
· Filling of the cavity – the increase of the cavity electric field is calculated from the input power pulse and parameters of the RF Gun resonator. 
· The reflected power and the cavity voltage vs. time are plotted into the same graph.
Theory

· The general expression for (complex) Reflection Coefficient is:
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(1)
Zc is the impedance of the “load”, i.e. the resonant cavity, and Zw is the characteristic impedance of the connecting line.
· The impedance of a resonator near its resonant frequency (o is expressed as:
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(2)
RSH is the resonator shunt resistance, Ql is the quality factor (including the loading from the external circuits) and detuning (( = ( - (o,  (( « (o. Here ( is the frequency independent variable and (o is the resonant frequency.
· The cavity coupling coefficient ( is defined as ( = RSH/Zw . 
Substituting for RSH in (2) and combining (1) and (2), the expression for the Reflection Coefficient in terms of resonator parameters is given
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(3)
( is cavity filling time constant, ( = Ql/(o.

· The frequency spectrum of the input signal into the cavity is calculated from the shape of the input power pulse as V((() = FFT{√p(t)}. 

· The reflected signal in the frequency domain can be directly calculated as
Vrefl((() = V((().(((().




(4)
· The Inverse Fast Fourier Transform, (IFFT), transforms this result back into the time domain, 
v(t) = IFFT{ Vrefl((()}. 





(5)

· The reflected power is plotted as a function of time using the square of the v(t).

· The exponential increase of cavity electric field is calculated from the input power pulse, cavity shunt impedance RSH and the cavity time constant (. It rises as (1- e-t/(2.()).
Program/Calculation

· The MATLAB program is used to calculate reflected power and to plot the results.

· User can define the shape of the input power pulse and the other relevant parameters of the RF gun resonator 
· coupling coefficient ( (= 2.1),
· cavity (unloaded) quality factor Qo (=13369),

· cavity shunt impedance RSH (=1.65 M(). 
· The input and reflected power is expressed in MW, the developed cavity voltage signal in MV. 
· Program is available and can be tested and used by anyone interested.
Results
· Present MATLAB plots – the results are calculated for the parameters given above. 

· The input power pulse has 4 intermediate steps, the height of each step is 25% of the maximum power. The duration, (width), of those steps is 4x, 5x, 5x, 4x of a single interval of the control clock step, 8.4 ns.
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Fig. 1 Test of the program, for given cavity parameters and ( = 1.
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Fig. 2 Five-step shape of the input power pulse keeps reflected power below 4 MW.
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Fig. 3. Detail of reflected power.

[image: image7.png]CAVITY VOLTAGE [MV]

8 T T T T T T T
Cavity voltage for

7 rectangular input pulse -+

6
Rsh = 1.65MOhm

5 Qo = 13370
coupl.coeff beta=2.1
time const =QU2 pi§=240 ns

ol " Cavity voltage for

S-step input pulse

3

2

1

q i

Voltage developed inside the RF Gun Resonatar for difierent inut power pulse

2 25 ERES 4 a5 5 55 6
TIME [us]




Fig. 4. Rise of the cavity electric field, (voltage), for the input step function and 5-step pulse. 

Input power pulse with a linear ramp increase
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